Check if a binary tree is height-balanced using tree-traversal

What is a height-balanced binary tree?
A height-balanced binary tree, is a tree in which the absolute difference of the height of the left sub-tree and the right sub-tree at every node is less than or equal to 1.

In this approach of checking if the binary-tree is height balanced, we traverse the tree like we do in a post-order tree traversal. Once we reach the leaf node, we return its height to the parent. Thus the parent has heights of both the left and right sub-trees and can determine if the trees below are height-balanced.

Note : Parent node returns its own height as [ 1 + maximum (Height of left-subtree, Height right-subtree) ].

Example: Consider the below binary-tree.
- Node 5 and Node 6 are the leaf nodes whose parent is Node 4. These leaf nodes return height 1 to the parent Node 4. As both left and right subtree of Node 4 have height 1, the subtree is balanced at node 4.
- For Node 3, the difference in the height of left and right subtrees is 1.
- For Root Node 1, the height of the left subtree is 1 and the height of the right subtree is 3. Thus the absolute difference in the height of the left and right subtree is greater than 1, hence is not a balanced binary tree.

Height_Balanced_Trees_Using_Traversal

Examples Height_Balanced_Trees

Time complexity of checking if a binary tree is height balanced using tree-traversal : O(N), where N is the number of nodes in the tree. Since every node is visited once and at every node we check if the height of the left and right sub-trees are height balanced, the time complexity is O(N).



Program to check if a tree is height-balanced using tree-traversal

class Node:

    def __init__(self, data, left_node = None, right_node = None):
        self.left = left_node
        self.right = right_node
        self.data = data

class Tree:

    def FindHeight (self, root):
        if (root == None):
            return 0

        height_left_subtree = self.FindHeight (root.left)
        height_right_subtree = self.FindHeight (root.right)

        if (abs(height_left_subtree - height_right_subtree) > 1):
             self.flag_height_balanced = False

        return (1 + max(height_left_subtree, height_right_subtree))

    def CheckIfHeightBalanced (self, root):
        self.flag_height_balanced = True
        self.FindHeight(root)
        return self.flag_height_balanced

def main ():
    """ Tree A is height-balanced.
                 11 
                 / \ ----- height 0  
    height 1--- 22       

    """
    node22 = Node(22)
    root_node11 = Node(11, node22, None)

    """ Tree B is height-balanced.
                  1 
                 / \
    height 1----2   3  
                   / \
                  4   5 ----- height 2
    """
    node2 = Node(2)
    node4 = Node(4)
    node5 = Node(5)
    node3 = Node(3, node4, node5)
    root_node1  = Node(1, node2, node3)

    """ Tree C is not height-balanced as height difference is abs(1-3) = 2.
                           10 
                          / \
             height 1--- 20  30  
                            / \
                           70  40
                              / \
                             50  60 ------- height 3
    """

    node20 = Node(20)
    node70 = Node(70)
    node50 = Node(50)
    node60 = Node(60)
    node40 = Node(40, node50, node60)
    node30 = Node(30, node70, node40)
    root_node10 = Node(10, node20, node30)

    roots = [root_node11, root_node1, root_node10]

    t = Tree ()
    for root in roots :
        if (t.CheckIfHeightBalanced(root)) :
            print("Tree with root (" + str(root.data) + ") is height balanced.")
        else :
            print("Tree with root (" + str(root.data) + ") is not height balanced.")

if __name__ == "__main__":
    main()

Output

Tree with root (11) is height balanced.
Tree with root (1) is height balanced.
Tree with root (10) is not height balanced.
#include<iostream>
#include<vector>
using namespace std;

class Node {

    public:
    int data;
    Node * left;
    Node * right;
    Node(int x, Node * left_node = nullptr, Node * right_node = nullptr) : data(x), left(left_node), right(right_node)
    {}
};

class Tree {

    private:
    bool flag_height_balanced;

    public:
    Tree () {
    }

    inline bool CheckIfHeightBalanced (Node * root) {
        // Initially set the height balanced flag to true.
        flag_height_balanced = true;
        FindHeight(root);
        return flag_height_balanced;
    }

    int FindHeight (Node * node) {
        if (node == NULL)
            return 0;

        int height_left_subtree  = FindHeight (node->left);
        int height_right_subtree = FindHeight (node->right);

        if (abs(height_left_subtree - height_right_subtree) > 1) {
            flag_height_balanced = false;
        }
        return (1 + max (height_left_subtree, height_right_subtree));
    }
};

int main() {

    /* Tree A is height-balanced.
                  11 
                 / \ ----- height 0  
    height 1--- 22    
    */

    Node node22(22);
    Node root_node11(11, &node22, nullptr);

    /* Tree B is height-balanced.
                   1 
                  / \
    height 1---- 2   3  
                    / \
                   4   5 ----- height 2
    */

    Node node4(4), node5(5), node2(2);
    Node node3(3, &node4, &node5);
    Node root_node1(1, &node2, &node3);

    /* Tree C is not height-balanced as height difference is abs(1-3) = 2.
                   10 
                  / \
     height 1--- 20  30  
                      \
                      40
                      / \
                     50  60 ------- height 3
    */
    Node node50(50), node60(60), node20(20);
    Node node40(40, &node50, &node60);
    Node node30(30, nullptr, &node40);
    Node root_node10(10, &node20, &node30);

    vector<Node> roots = { root_node11, root_node1, root_node10 };

    Tree t;
    for (auto& root : roots) {
        if (t.CheckIfHeightBalanced(&root)) {
            cout << "Tree with root node (" << root.data << ") is height balanced." << endl;
        } else {
            cout << "Tree with root node (" << root.data << ") is not height balanced." << endl;
        }
    }
    return 0;
}

Output

Tree with root node (11) is height balanced.
Tree with root node (1) is height balanced.
Tree with root node (10) is not height balanced.
class Node {

    int data;

    Node left, right;

    Node (int n) {
        data = n;
        left = null;
        right = null;
    }
    Node (int n, Node left_child, Node right_child) {
        data = n;
        left = left_child;
        right = right_child;
    }
}

class Tree {

    boolean flag_height_balanced;

    boolean CheckIfHeightBalanced (Node root) {
        flag_height_balanced = true;
        FindHeight(root);
        return flag_height_balanced;
    }

    public int FindHeight (Node node) {

        if (node == null)
            return 0;

        int height_left_subtree  = FindHeight ( node.left );
        int height_right_subtree = FindHeight ( node.right );

        if (Math.abs(height_left_subtree - height_right_subtree) > 1) {
            flag_height_balanced = false;
        }

        return (1 + Math.max(height_left_subtree, height_right_subtree));
    }

    public static void main (String[] args) {

        /* Tree A is height-balanced.
                      11 
                     / \ ----- height 0  
        height 1--- 22    
        */

        Node root_node11 = new Node(11);
        Node node22 = new Node(22);

        /* Tree B is height-balanced.
                        1 
                       / \
         height 1---- 2   3  
                     / \
                    4   5 ----- height 2
        */

        Node node3 = new Node(3);
        Node node4 = new Node(4);
        Node node5 = new Node(5);
        Node node2 = new Node(2, node4, node5);
        Node root_node1 = new Node(1, node2, node3);

        /* Tree C is not height-balanced as height difference is abs(1-3) = 2.
                       10 
                      / \
        height 1 --- 20  30  
                        / \
                       70  40
                          / \
                         50  60 ------- height 3
        */

        Node node50 = new Node(50);
        Node node60 = new Node(60);
        Node node70 = new Node(70);
        Node node20 = new Node(20);
        Node node40 = new Node(40, node50, node60);
        Node node30 = new Node(30, node70, node40);
        Node root_node10 = new Node(10, node20, node30);

        Node [] roots = {root_node11, root_node1, root_node10};

        Tree t = new Tree();
        for (Node n : roots) {
            if (t.CheckIfHeightBalanced(n)) {
                System.out.println("Tree with node (" + n.data + ") is height balanced.");
            } else {
                System.out.println("Tree with node (" + n.data + ") is not height balanced.");
            }
        }
    }
}

Output

Tree with node (11) is height balanced.
Tree with node (1) is height balanced.
Tree with node (10) is not height balanced.



Copyright (c) 2019-2024, Algotree.org.
All rights reserved.