Matrix Multiplication

Condition for the multiplication of 2 matrices

  • The count of columns in the first matrix should match the count of rows in the second matrix. Matrix_Multiplication

Program for the multiplication of 2 matrices using the straight-forward (naive) technique.
Time complexity : O ( n 3 )

def Multiplication (matrix_1, matrix_2, result) :

    rows_1 = len(matrix_1)
    cols_1 = len(matrix_1[0])
    cols_2 = len(matrix_2[0])

    for r in range(rows_1) :
        for c in range(cols_2) :
            for p in range(cols_1) :
                 result [r][c] += matrix_1[r][p] * matrix_2[p][c]

def main () :

    print("Dimensions of Matrix 1")
    rows_1 = int(input("Enter row count : "))
    cols_1 = int(input("Enter column count : "))

    matrix_1 = [0] * rows_1
    for r in range(rows_1) :
        matrix_1[r] = [0] * cols_1

    for r in range(rows_1) :
        for c in range(cols_1) :
             matrix_1[r][c] = int(input("Enter [" + str(r) + "]" + "[" + str(c) + "] : "))

    print("\nDimensions of Matrix 2")
    print("Rows of Matrix 2 = " + str(cols_1) + " (matching the column count of matrix 1)")
    rows_2 = cols_1

    cols_2 = int(input("Enter column count : "))

    matrix_2 = [0] * rows_2
    for r in range(rows_2) :
        matrix_2[r] = [0] * cols_2

    for r in range(rows_2) :
        for c in range(cols_2) :
             matrix_2[r][c] = int(input("Enter [" + str(r) + "]" + "[" + str(c) + "] : "))

    result = [0] * rows_1
    for r in range(rows_1) :
        result[r] = [0] * cols_2

    Multiplication (matrix_1, matrix_2, result)

    print("\nResult Matrix")
    for r in range(rows_1) :
        for c in range(cols_2) :
             print("[" + str(r) + "]" + "[" + str(c) + "] : " + str(result[r][c]), end = ' ')
        print("")

if __name__ == "__main__" :
    main()

Output

Dimensions of Matrix 1
Enter row count : 2
Enter column count : 3
Enter [0][0] : 1
Enter [0][1] : 2
Enter [0][2] : 3
Enter [1][0] : 4
Enter [1][1] : 5
Enter [1][2] : 6

Dimensions of Matrix 2
Rows of Matrix 2 = 3 (matching the column count of matrix 1)
Enter column count : 2
Enter [0][0] : 6
Enter [0][1] : 5
Enter [1][0] : 4
Enter [1][1] : 3
Enter [2][0] : 2
Enter [2][1] : 1

Result Matrix
[0][0] : 20 [0][1] : 14
[1][0] : 56 [1][1] : 41 
#include<iostream>

void Matrix_Multiplication ( int ** matrix_1, int rows_1, int cols_1,
                             int ** matrix_2, int rows_2, int cols_2,
                             int ** result ) {

    for (int r = 0; r < rows_1; r ++) {
        for (int c = 0; c < cols_2; c++) {
            for ( int p = 0; p < cols_1; p++) {
                 result [r][c] += matrix_1[r][p] * matrix_2[p][c];
            }
        }
    }
}

int main() {

    int rows_1, cols_1, rows_2, cols_2;
    std :: cout << "Dimensions of Matrix 1" << std :: endl;
    std :: cout << "Enter row count : ";
    std :: cin >> rows_1;
    std :: cout << "Enter column count : ";
    std :: cin >> cols_1;

    int ** matrix_1 = new int * [rows_1];
    for (int r = 0; r < rows_1; r++) {
        matrix_1[r] = new int [cols_1];
    }

    for (int r = 0; r < rows_1; r++) {
        for (int c = 0; c < cols_1; c++) {
             std :: cout << "Enter [" << r << "]" << "[" << c << "] : ";
             std :: cin >> matrix_1[r][c];
        }
    }

    std :: cout << "\nDimensions of Matrix 2" << std :: endl;
    std :: cout << "Rows Count : " << cols_1 << " ( matching the column count of matrix 1 )" << std :: endl;
    std :: cout << "Enter column count : ";
    std :: cin >> cols_2;
    rows_2 = cols_1;

    int ** matrix_2 = new int * [rows_2];
    for (int r = 0; r < rows_2; r++) {
        matrix_2[r] = new int [cols_2];
    }

    for (int r = 0; r < rows_2; r++) {
        for (int c = 0; c < cols_2; c++) {
             std :: cout << "Enter [" << r << "]" << "[" << c << "] : ";
             std :: cin >> matrix_2[r][c];
        }
    }

    int ** result = new int * [rows_1];
    for (int r = 0; r < rows_1; r++) {
        result [r] = new int [cols_2];
    }

    Matrix_Multiplication (matrix_1, rows_1, cols_1, matrix_2, rows_2, cols_2, result);

    std :: cout << "\nResult Matrix" << std :: endl;
    for (int r = 0; r < rows_1; r++) {
        for (int c = 0; c < cols_2; c++) {
            std :: cout << "[" << r << "]" << "[" << c << "] : " << result[r][c] << "  ";
        } std :: cout << std :: endl;
    }

    // Deallocate the memory of matrix 1
    for (int r=0; r < rows_1; r++) {
        delete [] matrix_1[r];
    }
    delete [] matrix_1;

    // Deallocate the memory of matrix 2
    for (int r=0; r < rows_2; r++) {
        delete [] matrix_2[r];
    }
    delete [] matrix_2;

    // Deallocate the memory of result matrix
    for (int r=0; r < rows_1; r++) {
        delete [] result[r];
    }
    delete [] result;

    return 0;
}

Output

Dimensions of Matrix 1
Enter row count : 2
Enter column count : 3
Enter [0][0] : 1
Enter [0][1] : 2
Enter [0][2] : 3
Enter [1][0] : 4
Enter [1][1] : 5
Enter [1][2] : 6

Dimensions of Matrix 2
Rows Count : 3 ( matching the column count of matrix 1 )
Enter column count : 2
Enter [0][0] : 6
Enter [0][1] : 5
Enter [1][0] : 4
Enter [1][1] : 3
Enter [2][0] : 2
Enter [2][1] : 1

Result Matrix
[0][0] : 20  [0][1] : 14  
[1][0] : 56  [1][1] : 41  
import java.util.Scanner;

class Matrix {

    void Multiplication (int [][] matrix_1, int[][] matrix_2, int result[][]) {

        int rows_1 = matrix_1.length;
        int cols_1 = matrix_1[0].length;
        int cols_2 = matrix_2[0].length;

        for (int r = 0; r < rows_1; r ++) {
            for (int c = 0; c < cols_2; c++) {
                for ( int p = 0; p < cols_1; p++) {
                     result [r][c] += matrix_1[r][p] * matrix_2[p][c];
                }
            }
        }
    }

    public static void main (String[] args) {

        int rows_1, cols_1, rows_2, cols_2;

        Scanner scan = new Scanner(System.in);

        System.out.println("Dimensions of Matrix 1");

        System.out.print("Enter row count : ");
        rows_1 = scan.nextInt();

        System.out.print("Enter column count : ");
        cols_1 = scan.nextInt();

        int[][] matrix_1 = new int[rows_1][cols_1];

        for (int r = 0; r < rows_1; r++) {
            for (int c = 0; c < cols_1; c++) {
                System.out.print("Enter [" + r + "]" + "[" + c + "] : ");
                matrix_1[r][c] = scan.nextInt();
            }
        }

        System.out.println("\nDimensions of Matrix 2");
        System.out.println("Rows of Matrix 2 = " + cols_1 + " (matching the column count of matrix 1)");
        rows_2 = cols_1;

        System.out.print("Enter column count : ");
        cols_2 = scan.nextInt();

        int[][] matrix_2 = new int[rows_2][cols_2];

        for (int r = 0; r < rows_2; r++) {
            for (int c = 0; c < cols_2; c++) {
                System.out.print("Enter [" + r + "]" + "[" + c + "] : ");
                matrix_2[r][c] = scan.nextInt();
            }
        }

        int[][] result = new int[rows_1][cols_2];

        Matrix m = new Matrix();
        m.Multiplication (matrix_1, matrix_2, result);

        System.out.println("\nResult Matrix");
        for (int r = 0; r < rows_1; r++) {
            for (int c = 0; c < cols_2; c++) {
                System.out.print("[" + r + "]" + "[" + c + "] : " + result[r][c] + "  ");
            } System.out.println();
        }
    }
}

Output

Dimensions of Matrix 1
Enter row count : 2
Enter column count : 3
Enter [0][0] : 1
Enter [0][1] : 2
Enter [0][2] : 3
Enter [1][0] : 4
Enter [1][1] : 5
Enter [1][2] : 6

Dimensions of Matrix 2
Rows of Matrix 2 = 3 (matching the column count of matrix 1)
Enter column count : 2
Enter [0][0] : 6
Enter [0][1] : 5
Enter [1][0] : 4
Enter [1][1] : 3
Enter [2][0] : 2
Enter [2][1] : 1

Result Matrix
[0][0] : 20  [0][1] : 14  
[1][0] : 56  [1][1] : 41  


Copyright (c) 2019-2024, Algotree.org.
All rights reserved.